If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-20x+34=0
a = 1; b = -20; c = +34;
Δ = b2-4ac
Δ = -202-4·1·34
Δ = 264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{264}=\sqrt{4*66}=\sqrt{4}*\sqrt{66}=2\sqrt{66}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{66}}{2*1}=\frac{20-2\sqrt{66}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{66}}{2*1}=\frac{20+2\sqrt{66}}{2} $
| 2(9x-4)+5=6(3x-2)+7 | | 5/8(x-6)=25+4x | | 15-7(2x+6)=8 | | x1 + x2 + 2x3 = 1 | | x1 + 2x2 + 4x3 = 2 | | 3.2=6.2+u | | 5x^2+4x-1=7 | | (18+y)×(-14+y)=0 | | -7.6(x-3.75)=30.4 | | 2x+1/2=1 | | 3x-10=-1/3 | | 6y-9=-4y+21 | | b^2+16b+64=256 | | 2x+4=216 | | 0.8x=0.448 | | 5x-4=1/5(5+20) | | 8a+a+36=16a-48 | | 2x-7+x=-4x+21 | | 5r+60=9r | | 3b=5b+10 | | 4(5x+9)-5=20x+31 | | 3(6x-2)=-(-20x-3) | | 2800/3.5=x | | 26-x=2(×+1) | | 2.3/1.6=46/w | | 93x−10=(181) | | 3/4x=(-11.25) | | 10x+4−8x=2(x−1) | | 19a-3/2=17 | | 6.5x=(-97.5) | | 3/4w=(-5.25) | | 8x-18=3(x-2)+4 |